

Welcome to Jume’s documentation!

This documentation describe the Godot project Jume, in order to make it easier to modify the code base if needed.

Jume is a side-project developped by myself. I really liked the Archero game on Android, so I decided to create a similar game !

Contents

	Installation

	Nodes

Installation

Install Godot

Download and install Godot from their official website [https://godotengine.org/download/].

Clone this repository

Clone the repository locally :

git clone https://github.com/astariul/jume.git

And now you’re good to go !

Now just open Godot and import the project from where you cloned it.

Nodes

	Entity

	Player

	Ennemy

	Projectile

	Arrow

	Bullet

	Bow

	Shooter

	HealthBar

Entity

Abstract Node for common behavior between all entities.

Inherits : KinematicBody2D [https://docs.godotengine.org/en/3.1/classes/class_kinematicbody2d.html]

Inherited by : Player, Ennemy

Properties

knockbacker_pos

knockbacker_pow

knockback_frame

knockback_ratios

knockback_power

damage

destination

target

speed

Methods

set_destination()

reset_destination()

get_base_velocity()

knockback_from()

apply_knockback()

is_targetting()

select_target()

fire()

interrupt_shooting()

hit_by()

Constants

	SELECT_CLOSEST = “closest”

	
One of existing targetting method.

This one will choose the closest ennemy to the player.

Signals

	running

	
Signal emitted when the entity is moving.

This signal should be emitted from the _physics_process() function of the child class (not handled in this class).

Emitted by : Player._process()
Received by : Shooter._on_running_timeout()

	immobile

	
Signal emitted when the entity is not moving.

This signal should be emitted from the _physics_process() function of the child class (not handled in this class).

Emitted by : Player._process()
Received by : Shooter._on_immobile_timeout()

Description

This is an Abstract Node, meaning it’s just a script (there is no scene associated to this script).

It is used to define common behavior between all entities to avoid code duplication.

Common behaviors handled by this Node are mainly :

	Common properties and associated methods

	Knockback

	Fire projectile

	Hit by projectile

Properties description

knockbacker_pos

	Type

	Vector2

	Default

	null

Position of the knockbacker.

When an entity is knockbacked, the knockbacker position is kept in memory and used later for knockback direction computations.

knockbacker_pow

	Type

	int

Power of the knockbacker.

When an entity is knockbacked, the knockbacker power is kept in memory and used later for knockback direction computations.

knockback_frame

	Type

	int

	Default

	0

Current frame of the knockback.

Used together with knockback_ratios in order to create a smooth knockback animation.

knockback_ratios

	Type

	array of float

	Default

	[9, 8, 6.5, 4.5, 2]

Speed ratios of the knockback.

Used to create a smooth knockback animation.

knockback_power

	Type

	int

	Default

	100

Knockback power of this entity.

damage

	Type

	int

	Default

	10

Knockback damages inflicted by this entity to other knockbacked entities.

destination

	Type

	Vector2

	Default

	null

Aimed position by the entity.

This is used to control to entity : it will go in the direction of destination.

For example, if the entity is located to (0, 0) and the destination is set to (1, 0), entity will move to the right.

target

	Type

	WeakRef [https://docs.godotengine.org/en/3.1/classes/class_weakref.html]

	Default

	null

Reference to the targetted entity.

Entity may be targetting nothing. The target is used when firing weapon : the bullet will be fired in the direction of the current target (and hopefully touch the target !).

speed

	Type

	int

	Default

	100

Walking speed of the entity.

Methods description

set_destination(dest=null)

	Arguments

	dest

	
The new destination for this entity.

Default to null.

Method used to set a new destination (or update current destination) for this entity.

Destination is not updated if null is given.

reset_destination()

Reset the current destination to null.

get_base_velocity()

	Return Vector2

Compute the base velocity of the entity, going in the direction of the destination using speed.

The computed velocity is returned.

knockback_from(collider)

	Arguments

	collider

	
The Entity colliding with the current entity.

Position and knockback_power of the collider is used to compute knockback.

Knockback the current entity. This method only save the value of knockbacker_pos and knockbacker_pow.

The knockback computations happen in apply_knockback().

apply_knockback(velocity)

	Return Vector2

	Arguments

	velocity

	Velocity to update with the knockback.

Compute the knockback velocity, based on :

	knockbacker_pos & knockbacker_pow

	current position

	given velocity

	knockback_ratios & knockback_frame

is_targetting()

	Return bool

In order to know if the entity is targetting something or not, this method should be called.

select_target(group_name, selection_method="closest")

	Return float

	Arguments

	group_name

	The name of the group from where to choose a new target.

	selection_method

	
Selection method to use for choosing a new target.

Defaults to select_closest.

Select a new target among the given group of Entity.

For now only one selection method is implemented (select_closest), but later it will be possible to choose among other methods.

The value returned is the best value used to compare Entity of the group. For example for select_closest method, it is the negation of the distance (so the biggest, the closest).

If there is no Entity is the group, it return null.

fire(projectile, atk_speed)

	Arguments

	projectile

	Instancied projectile to fire.

	atk_speed

	Attack speed to use to fire.

This method is used as a general method for firing a projectile. For specific behaviors, please refer to each Node.

This method compute the angle between the Entity and the target, then rotate the projectile to this direction and update the speed of the projectile to fire it.

It also rotate the Entity sprite to face the target when firing.

This method does nothing if no target is selected.

interrupt_shooting()

This method does nothing. It may be overwrited by child Nodes to define a behavior in case shooting should be interrupted. Here there is nothing to interrupt due to the current implementation of fire().

It is called by the shooter class.

hit_by(projectile)

	Arguments

	projectile

	Projectile colliding with the Entity.

This method does 2 things :

	Update the health bar of the entity based on the damage of the projectile.

	Knockback the entity from the projectile.

Player

Node representing the playable character.

Inherits : Entity

Methods

_ready()

_process()

_physics_process()

_on_HealthBar_dead()

fire()

interrupt_shooting()

Description

This Node represent the playable character.

It’s an Entity, and simply modify some general behavior into more specific ones :

	Change a few characteristics

	Firing projectile is bow-specific

Methods description

_ready()

Method starting animations, adding the Node to the players group, and changing a few Entity characteristics.

_process()

	Arguments

	delta

	Delta (see Godot documentation for more details).

This method is executed every frame and do several things :

	If the player don’t have a target anymore, select a new one.

	Get the input from user and set a new destination accordingly, as well as animation. It does not move the player, simply set the new destination.

	Emit right signal depending if the player is running or not.

	Emitted signals

	running

	This signal is emitted when the player is moving.

	immobile

	This signal is emitted when the player is not moving.

_physics_process(delta)

	Arguments

	delta

	Delta (see Godot documentation for more details).

This method takes care of the physics engine processing : it moves the player according to :

	The base velocity of the player (computed from the destination, set in _process())

	The knockback velocity, if any.

_on_HealthBar_dead()

Free itself upon receiving the dead signal.

	Receives signals

	dead

	This signal is emitted when the healthbar reach 0.

fire(projectile, atk_speed)

	Arguments

	projectile

	Instancied projectile to fire.

	atk_speed

	Attack speed to use to fire.

Overwrite the parent method for firing the projectile. It delegate the actual firing to the Bow.

This method does nothing if no target is selected.

interrupt_shooting()

This method interrupt the animation of Bow.

Ennemy

Node representing an ennemy, controlled by the computer.

Inherits : Entity

Methods

_ready()

_physics_process()

_on_HealthBar_dead()

Description

This Node represent an ennemy, controlled by the computer (need to make IA yet).

It’s an Entity, and simply modify some general behavior into more specific ones :

	Change a few characteristics

Methods description

_ready()

Method starting animations, adding the Node to the enemies group, and changing a few Entity characteristics.

_physics_process(delta)

	Arguments

	delta

	Delta (see Godot documentation for more details).

This method takes care of the physics engine processing.

It selects a new target if no target are selected, it moves the ennemy according to the base velocity and the knockback velocity if any, and it emits the right signal depending if the ennemy is running or not.

_on_HealthBar_dead()

Free itself upon receiving the dead signal.

	Receives signals

	dead

	This signal is emitted when the healthbar reach 0.

Projectile

Abstract Node for common behavior between all projectiles.

Inherits : KinematicBody2D [https://docs.godotengine.org/en/3.1/classes/class_kinematicbody2d.html]

Inherited by : Arrow, Bullet

Properties

speed

bounce_nb

remain_time

damage

knockback_power

velocity

Methods

init()

physics_process()

bounce()

impact()

_on_timer_timeout()

Description

This is an Abstract Node, meaning it’s just a script (there is no scene associated to this script).

It is used to define common behavior between all projectiles to avoid code duplication.

Common behaviors handled by this Node are mainly :

	Collision with Entities

	Bouncing (or not) on walls

	Projectile being stabbed into walls

Properties description

speed

	Type

	int

	Default

	1000

Speed of the projectile.

bounce_nb

	Type

	int

	Default

	0

Number of walls-bounce allowed.

remain_time

	Type

	float

	Default

	0

Number of seconds the projectile stay stabbed into a wall before being freed.

damage

	Type

	int

	Default

	25

Amount of damage inflicted when entity collide with this projectile.

knockback_power

	Type

	int

	Default

	10

Knockback power of this projectile.

velocity

	Type

	Vector2

	Default

	(0, 0)

Current velocity of the projectile.

Methods description

init(s=1000, d=25, bn=0, rt=0, kp=10)

	Arguments

	s

	
The new speed of the created Projectile.

Default to 1000.

	d

	
The new damage of the created Projectile.

Default to 25.

	bn

	
The new bounce_nb of the created Projectile.

Default to 0.

	rt

	
The new remain_time of the created Projectile.

Default to 0.

	kp

	
The new knockback_power of the created Projectile.

Default to 10.

This method is used to initialize as we want a new projectile, instead of setting each property by hand.

physics_process()

	Arguments

	delta

	Delta (see Godot documentation for more details).

Process the main physic of the projectile :

	Move according to current velocity

	If a collision with an entity happen, free this projectile and hit the entity.

	If a collision with a wall happen, bounce, and later stay stabbed in the wall.

bounce(collision)

	Return bool

	Arguments

	collider

	Colliding object.

If the projectile can still bounce (bounce_nb is not exhausted yet), update the current velocity to account the bounce.

It returns true if the projectile is bounced, false if it cannot bounce anymore.

impact()

Stab the projectile into the wall (effectively immobolizing the projectile).

It starts a timer for remain_time seconds, which call _on_timer_timeout() when done.

_on_timer_timeout()

Method called when the projectile have been stabbed into the wall for remain_time seconds.

Simply free the projectile.

	Receives signals

	timeout [https://docs.godotengine.org/en/3.1/classes/class_timer.html#signals]

	This signal is emitted when the timer (that waited for remain_time seconds) ends.

Arrow

Node representing an arrow from the player.

Inherits : Projectile

Methods

_ready()

_physics_process()

Description

This Node represent an arrow, which is a projectile fired by the player.

It’s a Projectile, and does not change any of the parent behavior. It is created only for easy understanding of which projectile is friendly and which one is not.

Methods description

_ready()

In this method, the projectile is simply initialized with different values, specific to Arrow.

_physics_process(delta)

	Arguments

	delta

	Delta (see Godot documentation for more details).

This method simply calls the parent’s physics. There is not additional behavior.

Bullet

Node representing a bullet from an ennemy.

Inherits : Projectile

Methods

_ready()

_physics_process()

Description

This Node represent a bullet, which is a projectile fired by the ennemies.

It’s a Projectile, and does not change any of the parent behavior. It is created only for easy understanding of which projectile is friendly and which one is not.

Methods description

_ready()

In this method, the projectile is simply initialized with different values, specific to Bullet.

_physics_process(delta)

	Arguments

	delta

	Delta (see Godot documentation for more details).

This method simply calls the parent’s physics. There is not additional behavior.

Bow

Node representing the player’s weapon : a bow.

Inherits : AnimatedSprite [https://docs.godotengine.org/en/3.1/classes/class_animatedsprite.html]

Properties

curr_projectile

curr_angle

Methods

_ready()

fire()

interrupt_animation()

_on_Bow_animation_finished()

Constants

	BASE_FPS = 10

	
Minimum number of FPS for the bow animation.

The animation can be played faster (if the attack speed increase for example), but never slower.

	NB_FRAME = 5

	Number of frames for the bow attack animation.

	BASE_ANGLE = -PI / 4

	Angle of the bow when the player just hold it (not targetting anything).

	BACKWARD_SPEED = 2.5

	
Speed of the projectile when drawing a bow.

It’s basically just for smooth animation.

	BASE_POS_X = 25

	
X-Position of the projectile to put it in the right place (the bow).

Originally, the projectile is placed on the center of the entity holding it. We need to change this position, to place the projectile on the bow.

	BASE_POS_Y = -2

	
Y-Position of the projectile to put it in the right place (the bow).

Originally, the projectile is placed on the center of the entity holding it. We need to change this position, to place the projectile on the bow.

Description

This Node represent a bow, the player’s weapon.

The code mainly handle smooth animation of firing arrow : going backward a bit, aiming at the right place, and finally firing the arrow !

Properties description

curr_projectile

	Type

	:doc:`arrow`

Current projectile handled and animated by the bow.

curr_angle

	Type

	float

Current targetting angle. At the end of animation, the arrow will be fired in this direction.

Methods description

_ready()

Simply start the animation.

fire(angle, projectile, attack_speed)

	Arguments

	angle

	Aimed angle. Arrow should be fired at this angle.

	projectile

	Instancied projectile to fire.

	attack_speed

	Attack speed to use to fire.

This method compute the right FPS (based on the attack speed) and animate the bow as well as the projectile for a smooth animation.

interrupt_animation()

This method interrupt the animation, resetting it and freeing the projectile.

_on_Bow_animation_finished()

This method is executed when the bow animation ends.

It set the current animation back to idle and fire the projectile !

	Receives signals

	animation_finished [https://docs.godotengine.org/en/3.1/classes/class_animatedsprite.html#signals]

	This signal is emitted when the animation being played ends.

Shooter

Node creating a level of abstraction in order to fire projectiles.

Inherits : Node2D [https://docs.godotengine.org/en/3.1/classes/class_node2d.html]

Properties

entity

projectile

can_shoot

attack_speed

hit_n_run

Methods

init()

_ready()

set_can_shoot()

_on_start_attack_timeout()

_on_stop_attack_timeout()

_on_Recharging_timeout()

_on_immobile_timeout()

_on_running_timeout()

Signals

	start_attack

	Signal emitted when the entity can start attacking (after stop moving for example).

Emitted by : set_can_shoot()
Received by : _on_start_attack_timeout()

	stop_attack

	Signal emitted when the entity should stop attacking (when running for example).

Emitted by : set_can_shoot()
Received by : _on_stop_attack_timeout()

Description

This Node acts as a layer. It’s a layer above the player, and his job is to instance the projectiles.

Such a trick is needed, because if we simply instancied the projectile in the player Node, projectiles would be childrens of the player, and whenever the player move, the projectiles would move also. We need the position of the player and the projectiles to be independant.

This Node also handle the timer for the attack speed.

Properties description

entity

	Type

	WeakRef [https://docs.godotengine.org/en/3.1/classes/class_weakref.html]

	Default

	null

Reference to shooting Entity.

projectile

	Type

	Projectile

	Default

	null

Non-Instancied Projectile to shoot. The Shooter will instanciate a new one every time it fires.

can_shoot

	Type

	bool

	Default

	true

State of the Shooter : if it can shoot (not running for example), it is true, else false.

attack_speed

	Type

	float

Attack speed to use to fire projectiles.

hit_n_run

	Type

	bool

	Default

	false

If true, allow the Entity to attack while moving.

This is false for the player for example.

Methods description

init(shooting_entity, projectile_to_shoot, attck_spd=1, hit_run=false)

	Arguments

	shooting_entity

	Set the shooting entity.

	projectile_to_shoot

	Non-instancied projectile to use when shooting.

	attck_spd

	Set the attack_speed.

	hit_run

	Set the hit_n_run.

Method to initialize the object with the value needed.

_ready()

This function simply call the set_can_shoot() function at startup time, in order to send the signal.

set_can_shoot(cs)

	Arguments

	cs

	Bool indicating if the player can shoot or not.

This method change the can_shoot property.

If the can_shoot is set to true, start_attack signal is emitted. Otherwise, stop_attack is emitted.

	Emitted signals

	start_attack

	This signal is emitted if can_shoot is set to true through this method.

	stop_attack

	This signal is emitted if can_shoot is set to false through this method.

_on_start_attack_timeout(collider)

Method called when start_attack signal is emitted.

It will call the method _on_Recharging_timeout() and start the timer according to attack_speed for the next projectile.

	Receives signals

	start_attack

	This signal is emitted when it’s time to shoot.

_on_stop_attack_timeout()

Method called when stop_attack signal is emitted.

It will interrupt the timer of attack_speed and call the Entity method to potentially interrupt other things such as animations.

	Receives signals

	stop_attack

	This signal is emitted when shooting is interrupted.

_on_Recharging_timeout()

Main timer, used for timing every time a projectile is fired, based on attack_speed.

If entity exist, it instanciate a new projectile and fire it.

If entity does not exist anymore (may be killed), it does nothing until the last fired projectile is freed (because if we free before, the child projectile will also be freed).

	Receives signals

	timeout [https://docs.godotengine.org/en/3.1/classes/class_timer.html#signals]

	This signal is emitted when the timer (that waited for some time based on attack_speed) ends.

_on_immobile_timeout()

Method called when signal immobile is emitted.

It simply set can_shoot to true if it was false.

	Receives signals

	immobile

	This signal is emitted when the entity stopped moving.

_on_running_timeout()

Method called when signal running is emitted.

It simply set can_shoot to false if it was true.

	Receives signals

	running

	This signal is emitted when the entity started moving.

HealthBar

Node for generic health bar.

Inherits : Node2D [https://docs.godotengine.org/en/3.1/classes/class_node2d.html]

Methods

init()

set_health()

set_max_health()

damage()

heal()

Signals

	dead

	
Signal emitted when the health bar reach 0.

Emitted by : damage()
Received by : Ennemy._on_HealthBar_dead(), Player._on_HealthBar_dead()

Description

This is a general-purpose Node, implementing a neat health bar.

It has really basic behavior for now, no regeneration or stuff like this.

Behaviors handled so far :

	Possible to set the color of the health bar (the shadow is always set to orange).

	Change the maximum number of HP.

	Take damages.

	Heal HP.

Methods description

init(max_health, color=Color(168, 0, 0))

	Arguments

	max_health

	Maximum HP for this health bar.

	color

	
Color of the health bar.

Defaults to red (code RGB : 168, 0, 0)

Method used to setup the health bar, with a specific number of maximum HP and specific color for the health bar.

set_health(h)

	Arguments

	h

	New number of HP.

Set the current number of HP to a specific number.

This method should be used (and not manually change the property of the Node) in order to keep the animation clean.

set_max_health(h)

	Arguments

	h

	New number of maximum HP.

Set the maximum number of HP to a specific number.

damage(d)

	Arguments

	d

	Amount of damage to inflict.

This method update the health bar based on the amount of damage inflicted.

If the number of HP reach 0, it emits the dead signal.

	Emitted signals

	dead

	This signal is emitted when the health bar reach 0 HP.

heal(h)

	Arguments

	h

	Amount of damage to heal.

This method update the health bar based on the amount of damage healed.

Literally the opposite of the damage() function.

Index

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Jume’s documentation!

 		
 Installation

 		
 Install Godot

 		
 Clone this repository

 		
 Nodes

 		
 Entity

 		
 Properties

 		
 Methods

 		
 Constants

 		
 Signals

 		
 Description

 		
 Properties description

 		
 Methods description

 		
 Player

 		
 Methods

 		
 Description

 		
 Methods description

 		
 Ennemy

 		
 Methods

 		
 Description

 		
 Methods description

 		
 Projectile

 		
 Properties

 		
 Methods

 		
 Description

 		
 Properties description

 		
 Methods description

 		
 Arrow

 		
 Methods

 		
 Description

 		
 Methods description

 		
 Bullet

 		
 Methods

 		
 Description

 		
 Methods description

 		
 Bow

 		
 Properties

 		
 Methods

 		
 Constants

 		
 Description

 		
 Properties description

 		
 Methods description

 		
 Shooter

 		
 Properties

 		
 Methods

 		
 Signals

 		
 Description

 		
 Properties description

 		
 Methods description

 		
 HealthBar

 		
 Methods

 		
 Signals

 		
 Description

 		
 Methods description

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

